

Wired to Feel: Understanding Adolescent Brain Development and Suicidal Risk

Kevin's Song Annual Education Summit
Jaime L Taylor, DO MS FAAFP
January 22, 2026

Objectives

- Explain the neurodevelopmental changes in the adolescent brain and how they contribute to impulsivity and emotional dysregulation
- Identify the biopsychosocial factors that increase risk for non-suicidal self injury and suicidal ideation during adolescence
- Describe the impact of social media and instant-gratification culture on adolescent resilience
- Demonstrate evidence-based strategies to promote distress tolerance and emotional regulation in youth

Wired to Feel: Understanding Risk

Risk

- Suicide remains a leading cause of death among U.S. adolescents.
 - Suicide is one of the top three causes of death for ages 10–18.
- In the past year:
 - Approximately 20% of high school students have seriously considered attempting suicide.
 - Nearly 10% report having had a suicide attempt.

Risk

- Nearly 40% of students report persistent feelings of sadness or hopelessness lasting two weeks or more, a strong predictor of suicidal thoughts and behaviors.
- For every suicide death, attempts and emergency department visits for self-harm increase.
 - Mortality figures significantly underrepresent the overall burden of adolescent suicidality.

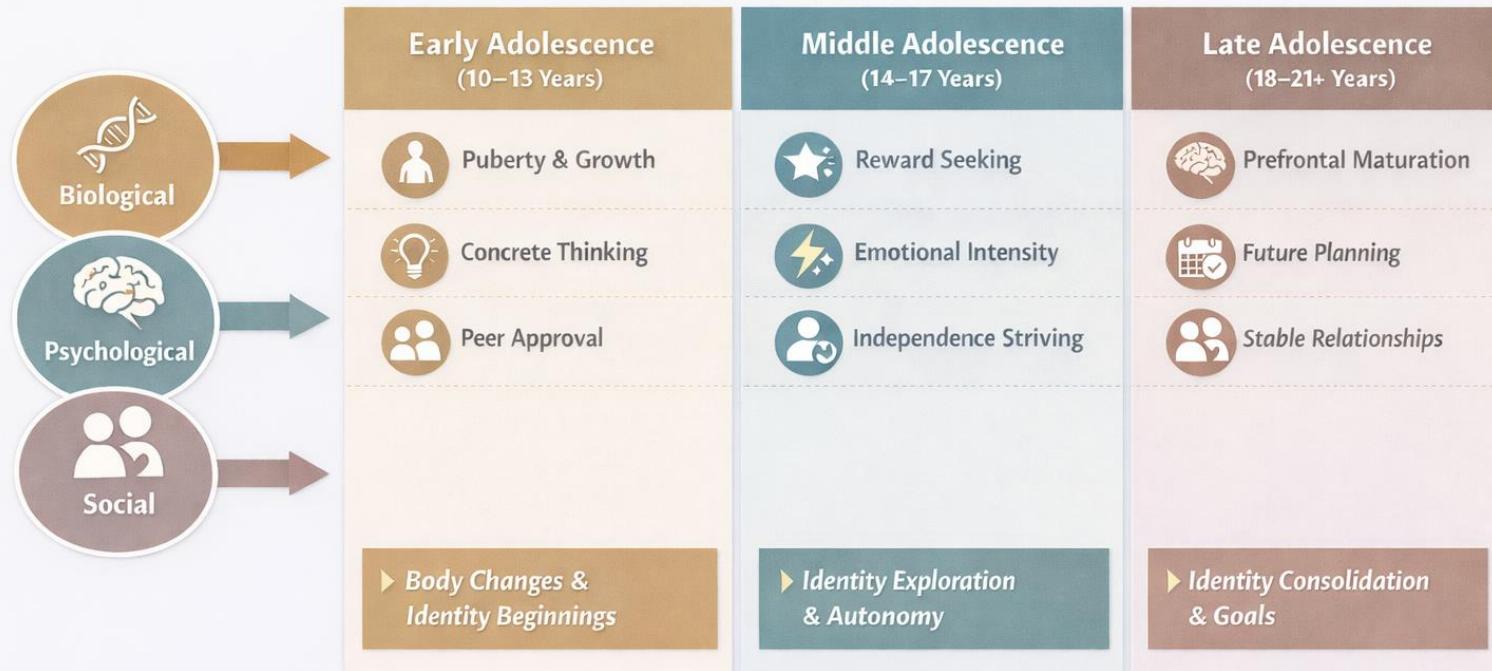
Prevalence

- According to the Substance Abuse and Mental Health Services Administration (SAMHSA), 12% of adolescents aged 12–17 had serious thoughts of suicide in the past year, and hundreds of thousands attempted suicide.
- Suicidal ideation:
 - Roughly 1 in 5 adolescents seriously consider attempting suicide each year.
- Suicide attempts:
 - Close to 1 in 10 high school students report an attempt within a 12-month period.

Trends Over Time

- Over the past 10 years:
 - Suicidal behaviors and self-harm visits to emergency departments have risen sharply.
 - This suggests higher distress and unmet mental health needs among youth.

Wired to Feel:
The Architecture of Adolescent Development


r.

The Biopsychosocial Lens

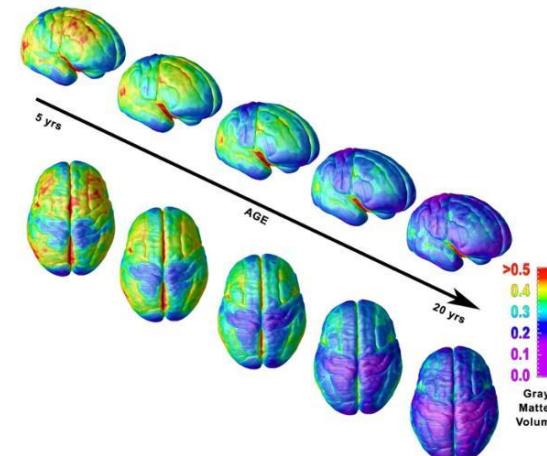
- Adolescent development occurs across biological, psychological, and social systems **ASYNCHRONOUSLY**.
- Risk and resilience emerge from the interaction between these as opposed to a **SINGLE** factor.

Biopsychosocial Stages of Adolescent Development

The Biopsychosocial Lens

Stage of Adolescence	Biological Development	Psychological Development	Social Development	Primary Developmental Goals
Early Adolescence (~10–13 years)	Onset of puberty Rapid physical growth Hormonal changes Increase emotional reactivity	Concrete thinking predominates Heightened emotional sensitivity Limited impulse control	Increased reliance on peer approval Beginning separation from parents	Adjust to bodily changes Begin identity awareness Establish peer belonging
Middle Adolescence (~14–17 years)	Continued brain remodeling Heightened reward sensitivity Limbic system highly active	Emerging abstract thinking Emotional intensity and volatility Increased risk-taking	Strong peer influence Desire for autonomy Romantic relationships begin	Identity exploration Autonomy from caregivers Emotional self-definition
Late Adolescence (~18–21+ years)	Ongoing prefrontal cortex maturation Improved executive functioning	Improved emotional regulation Future-oriented thinking Increased self-reflection	More stable relationships Greater independence and responsibility	Identity consolidation Long-term planning Integration of self-concept

Wired to Feel: The Developing Brain



The Developing Brain

Adolescents are neurologically primed for learning and adaptation but also for risk.

- Adolescent brain development is prolonged, nonlinear and experience dependent
- Brain maturation continues into mid-20s
- Emotional and reward systems mature before regulatory systems
- Creates a “developmental mismatch”

Brain Development in Adolescence

(<http://www.wellsphere.com>)

Casey et al., 2023

Fuhrmann et al., 2022

r.

Prefrontal Cortex

- Functions:
 - Impulse control
 - Planning and judgment
 - Emotional regulation
 - Future-oriented decision making
- Developmental reality
 - PFC maturation is slower than emotional and reward systems
- Adolescents may understand consequences cognitively but fail to regulate behavior emotionally

Luna et al., 2023
Steinberg, 2022
Casey et al., 2023

r.

Limbic System

Key limbic structures

- Amygdala
 - Threat detection
 - Fear response
- Ventral striatum
 - Reward processing
- Hippocampus
 - Emotional memory

Limbic System

During adolescent development
there is:

- Increased amygdala reactivity to social and emotional stimuli
- Heightened sensitivity to rejection, loss, and perceived failure
- Stronger emotional memory encoding

McLaughlin et al., 2022
Tottenham, 2023
Blakemore & Mills, 2023

r.

Reward Sensitivity

- Reward sensitivity
 - Dopamine-driven novelty seeking
 - Increased risk-taking
- Behaviors driven by reward
 - Preference for immediate rewards
 - Greater susceptibility to habit formation (adaptive or maladaptive)

Neuroplasticity

- Neuroplasticity
 - The brain's ability to reorganize itself based on experience
 - Especially high during adolescence
- Repeated behaviors strengthen neural pathways
- Coping strategies, healthy or harmful, can become ingrained.

When Development Increases Vulnerability

Development and Risk of NSSI and SI

- Adolescence is a time of high risk
 - High emotion in the presence of low regulation
 - Peer salience
 - Identity vulnerability
 - Increased exposure to stressors
 - First onset of many psychiatric disorders

Development and Risk of NSSI and SI

- Emergence of Mental Health Concerns
 - ~75% of lifetime mental health disorders emerge by age 24
 - Untreated symptoms increase NSSI and SI risk
 - Shame and stigma delay help-seeking

Risk of Non-Suicidal Self-Injury (NSSI) and Suicidal Ideation (SI)

- Non-Suicidal Self-Injury (NSSI)
 - Peak onset: ages 12–16
 - Often co-occurs with mood and anxiety disorders
 - A coping mechanism for intense emotional states
- Prevalence:
 - Approximately 18% of adolescents report lifetime NSSI

NSSI relationship to SI

- NSSI increases risk for later suicidal behavior.
 - Repeated self-injury may reduce fear of pain and death, increasing capability for suicide (Joiner's Interpersonal Theory).
 - Acute stressors, interpersonal conflict, or psychiatric symptoms can trigger transition from NSSI to suicidal behavior.
- It is important to remember, a NSSI history warrants risk assessment and safety planning.

King et al., 2025;

Klonsky et al., 2023

Ribeiro et al., 2022

Impulsivity and Emotional Dysregulation

- Act First, Think Later
 - Impulsivity
 - Rapid action during distress
 - Less time between thought and behavior
 - Strong link to impulsivity and NSSI and SI
 - Increased danger during acute emotional crises
 - Emotional Dysregulation
 - Emotional dysregulation is a core driver of self-harm behaviors
 - NSSI often functions to downregulate overwhelming affect

Luna et al., 2023
Sanz-Gómez et al., 2024
McLaughlin et al., 2022
Crowell et al., 2023

Development and Risk of NSSI and SI

- Peer Influence
 - Peer feedback shapes self-worth
 - Social comparison intensifies distress
 - Social rejection activated the limbic system threat circuitry
- Identity Formation
 - Identity uncertainty increases vulnerability to self-harm as a (maladaptive) coping skill

Steinberg & Monahan, 2022
Blakemore & Mills, 2023
Pfeifer & Berkman, 2023
Schwartz et al., 2021

r.

The Role of Social Media

Digital Development

- Adolescents spend 6–9 hours/day on screens.
 - Social media is highly important
- Online activity overlaps with peer identity formation.
- Social media magnifies both positive reinforcement and peer rejection.
 - Social media has become an extension of adolescent development.
 - Feedback is immediate, real and constant.

Social Media and Risk

- Social comparison
 - Viewing peers' curated lives can increase hopelessness
- Sleep disruption
 - Late-night scrolling affects mood regulation and sleep quality
- Cyberbullying
 - Direct harassment and exclusion increases stress
- Exposure to self-harm content
 - Normalizes maladaptive coping skills

Nagata et al., 2025;

Nesi et al., 2021

Marchant et al., 2021

r.

Instant Gratification and Reduced Resilience

- Algorithm-driven feedback loops create expectation of immediate reward.
- Reduces tolerance for delayed gratification or frustration.
- Less practice in coping with normal distress, which is protective.

Instant gratification online, and in general, reinforces neural pathways that favor quick emotional escape over adaptive coping.

Risk is Real.
Resilience is Possible.

r.

Understanding is Key

- Living with a developing brain can be overwhelming and confusing.
- Developmentally tailored education improves emotional insight and coping.
- Teaching adolescents how their brain works:
 - Normalizes emotional intensity
 - Reduces shame and self-blame
 - Increases help-seeking

Counteracting the Culture of Instant Gratification

- Adolescent brains are reward-sensitive.
 - Digital environments reinforce:
 - Immediate relief
 - Avoidance of discomfort
 - Low frustration tolerance
- Teach adolescents that discomfort is survivable and meaningful.

Be Okay Not Being Okay

- Emotional pain is not inherently dangerous.
- Attempts to eliminate distress often increases risk behaviors.
 - Acceptance-based approaches reduce self-harm urges.
 - Distress tolerance predicts lower suicide risk.
- Aim to:
 - Normalize distress as part of development
 - Reduce urgency to “fix” feelings.
 - Separate emotions from actions.

Exercise the Prefrontal Cortex

- Strengthening executive function skills includes:
 - Impulse control
 - Planning
 - Delaying gratification
 - Problem-solving when stressed
- Practice makes progress
 - Skill building when calm
 - Visual reminders
 - External scaffolding (lists, routines)

Exercise the Prefrontal Cortex

- Strengthening executive function skills includes:
 - Impulse control
 - Planning
 - Delaying gratification
 - Problem-solving when stressed
- Practice makes progress
 - Skill building when calm
 - Visual reminders
 - External scaffolding (lists, routines)

The Role of Supporters

- Family connectedness is one of the strongest buffers against suicide risk.
- It is important that supporters:
 - Validate vs Minimize
 - Provide predictable structure
 - Model distress tolerance and acknowledge that adults still struggle with this when falling short

Nutrition and Healthy Brain Development

- Nutrition is important in supporting healthy brain development and decreasing risk for maladaptive behaviors.
 - A dysregulated brain is harder to regulate when it is underfed.
- Adolescence is the second most rapid period of brain development after early childhood
- The brain accounts for 20–25% of total energy consumption.
 - Myelination (white matter growth)
 - Synaptic pruning
 - Neurotransmitter synthesis

Nutrition and Healthy Brain Development

- A dysregulated brain is harder to regulate when it is underfed.
- Lack of nutrition can lead to:
 - Mood instability
 - Impulsivity
 - Symptoms of anxiety and depression
 - Decreased efficacy of therapeutic interventions and psychotropic medications

Hope as a Neurodevelopmental Intervention

- Adolescence is a time of vulnerability AND opportunity.
- The same plasticity that increases risk also increases capacity for change.
- Adolescents, with the help of the trusted adults in their lives, can improve knowledge, build skills and create routines that will decrease risk and build resilience.

questions.

r.

REFERENCES

Blakemore, S.-J. (2023). Adolescence and mental health. *The Lancet*, 401(10385), 117–125.

Blakemore, S.-J., & Mills, K. L. (2023). Is adolescence a sensitive period for sociocultural processing? *Annual Review of Psychology*, 74, 381–408.

Brent, D. A., & Bridge, J. A. (2023). Suicide prevention in youth. *New England Journal of Medicine*, 388(11), 1021–1030.

Casey, B. J., Heller, A. S., Gee, D. G., & Cohen, A. O. (2023). Development of the emotional brain. *Developmental Review*, 68, 101080.

Crowell, S. E., Puzia, M. E., & Yaptangco, M. (2023). Emotion dysregulation and self-injurious behaviors. *Current Opinion in Psychology*, 49, 101532.

Diamond, A., & Ling, D. S. (2016). Interventions for improving executive functions. *Developmental Cognitive Neuroscience*, 18, 34–48.

Fuhrmann, D., Knoll, L. J., & Blakemore, S.-J. (2022). Adolescence as a sensitive period of brain development. *Trends in Cognitive Sciences*, 26(8), 682–696.

Glenn, C. R., Franklin, J. C., & Nock, M. K. (2019). Evidence-based treatments for self-injury in youth. *American Journal of Preventive Medicine*, 56(1), S28–S39.

Grosso, G., Galvano, F., & Mistretta, A. (2023). Omega-3 fatty acids and depression. *Nutrients*, 15(2), 456.

Hart, L. M., Cornell, C., Damiano, S. R., & Paxton, S. J. (2021). Weight stigma and adolescent mental health. *Journal of Adolescent Health*, 68(2), 248–255.

Hooley, J. M., & Franklin, J. C. (2023). A conceptual model of nonsuicidal self-injury. *American Psychologist*, 78(6), 739–752.

Jacka, F. N., et al. (2022). Nutritional psychiatry. *World Psychiatry*, 21(3), 412–425.

King, C. A., et al. (2025). Youth suicide prevention: State of the science. *Current Psychiatry Reports*, 27(2), 45–59.

Larsen, B., & Luna, B. (2022). Adolescence as a neurobiological critical period. *Developmental Cognitive Neuroscience*, 53, 101044.

Linehan, M. M. (2015). *DBT skills training manual* (2nd ed.). Guilford Press.

Luna, B., et al. (2023). Maturation of cognitive control. *Annual Review of Neuroscience*, 46, 295–317.

Marx, W., et al. (2021). Diet and mental health in youth. *Journal of the American Academy of Child & Adolescent Psychiatry*, 60(11), 1329–1343.

McCann, J. C., & Ames, B. N. (2021). Iron deficiency and brain function. *American Journal of Clinical Nutrition*, 113(6), 1555–1562.

McCauley, E., et al. (2018). DBT for adolescents at high suicide risk. *JAMA Psychiatry*, 75(8), 777–785.

McLaughlin, K. A., et al. (2022). Emotional development in youth. *American Psychologist*, 77(6), 785–799.

Miller, A. B., et al. (2022). Family factors and adolescent suicide risk. *Journal of Child Psychology and Psychiatry*, 63(4), 398–409.

Odgers, C. L., & Jensen, M. R. (2020). Adolescent mental health in the digital age. *Journal of Child Psychology and Psychiatry*, 61(3), 336–348.

Pfeifer, J. H., & Allen, N. B. (2021). Adolescent developmental neuroscience. *Developmental Cognitive Neuroscience*, 50, 100969.

Pfeifer, J. H., & Berkman, E. T. (2023). Identity development in adolescence. *Annual Review of Developmental Psychology*, 5, 133–158.

Prinstein, M. J., Nesi, J., & Telzer, E. H. (2020). Peer influence in adolescence. *Journal of Child Psychology and Psychiatry*, 61(9), 981–995.

Sanz-Gómez, S., et al. (2024). Impulsivity and suicidal behavior. *Journal of Affective Disorders*, 355, 102–114.

Sarris, J., et al. (2022). Nutrients for mental health. *The Lancet Psychiatry*, 9(3), 271–282.

Schwartz, S. J., et al. (2021). Identity development in adolescence. *Journal of Adolescent Research*, 36(5), 553–579.

Solmi, F., et al. (2022). Age at onset of mental disorders. *Molecular Psychiatry*, 27, 281–295.

Steinberg, L. (2022). *Adolescence* (12th ed.). McGraw-Hill.

Tottenham, N. (2023). Stress and the adolescent brain. *Current Directions in Psychological Science*, 32(1), 37–44.

Wolff, J. C., et al. (2023). Distress tolerance and suicide risk. *Clinical Psychology Review*, 101, 102260.